Substituting a Type-4 Resistant Starch for Available Carbohydrate Reduces Postprandial Glucose, Insulin and Hunger:  An Acute, Randomized, Double-Blind, Controlled Study1

 By Kristen N Smith, PhD, RD, LD; Mary R Dicklin, PhD; Kevin C Maki, PhD


Dietary fiber (including a wide variety of nondigestible carbohydrates) is a noted shortfall nutrient in Western diets, despite the fact that appropriate consumption is associated with a broad range of health benefits.2,3 One of the benefits that has received considerable attention is blunting of postprandial blood glucose control. Researchers have established a benefit between consumption of viscous fibers and blood glucose excursions.4 When certain fibers, such as resistant starch (RS), are used in place of available carbohydrate in foods, less glucose is liberated through digestion, thus lowering the rate and quantity of glucose entering the bloodstream after a meal.5

It is important to note that there are different types of RS receiving varying levels of attention in clinical trials. These differences are outlined in the table below.

Type of RS


Amount of Research

Resistant starch type-2

Granular, native starch

Resistant to digestion

Majority of clinical research is in these 2 areas

Resistant starch type-3

Retrograded starch

Resistant to digestion

Resistant starch type-4 (RS4)

Chemically modified starch

Resists digestion by intestinal enzymes

Fewer clinical trials in this area

Among the types of RS4, phosphate distarch phosphate is the most frequently tested6-8, with fewer studies on hydroxypropyl distarch phosphate9,10 and only one study on acid hydrolyzed and heat treated RS4, to date.11

The primary aim of this study was to characterize the postprandial blood glucose response in healthy adults to a novel RS4 (acid hydrolyzed and heat treated maize-based RS) in a ready-to-eat baked good (scone), compared with the response to consumption of a scone made with a control starch. The secondary aims were to evaluate postprandial insulin response, satiety and gastrointestinal tolerance. It was hypothesized that the replacement of digestible carbohydrate from refined wheat flour with RS4 would reduce postprandial blood glucose.


This was a double-blind, randomized, controlled trial conducted at MB Clinical Research in Boca Raton, Florida, USA.

Main Entry Criteria:

  • Age 18-74 y
  • Men and women
  • Body mass index (BMI) 18.5-29.99 kg/m2
  • General good health
  • Fasting capillary glucose <100 mg/dL

The treatment fiber scone contained VERSAFIBE™ 2470 resistant starch (provided by Ingredion Incorporated, Bridgewater, NJ) as the primary fiber source. VERSAFIBE™ 2470 is a RS4 with 70% dietary fiber and is produced from food grade high-amylose maize starch. Acid hydrolysis and heat treatment both reduce the digestibility of this high-amylose maize starch resulting in increased RS4 and total dietary fiber in the finished product. There are no nonstarch polysaccharides present in VERSAFIBE™ 2470. The nutrition composition of the Fiber Scone and Control Scone are shown in the following table.


Per Serving, As-Eaten

Control Scone



Weight (g)



Calories (kcal)



Fat (g)



Saturated fat (g)



Protein (g)



Total Carbohydrates (g)



Available Carbohydrates (g)



Dietary Fiber (g)*



Sugars (g)



*VERSAFIBE™ 2470 resistant starch provided 16.5 g dietary fiber in the Fiber Scone

The subjects attended 3 study visits, one for screening and two test visits. At the test visits, subjects consumed the Control Scone or Fiber Scone (randomly assigned sequence) with 240 mL water.  Capillary glucose, plasma glucose and plasma insulin were measured pre-consumption and at t = -15, 15, 30, 45, 60, 90, 120 and 180 min ± 2 min, where t = 0 was the start of the study product consumption. Satiety visual analog scale (VAS) ratings were assessed pre-consumption and at 3 min intervals.  Questionnaires were used to assess Gastrointestinal (GI) Tolerability and product palatability at each test visit.


A total of 36 subjects were randomized in the study, and one was withdrawn due to non-compliance. Ultimately, 32 subjects were included in the glucose and insulin analyses and 35 were included in the satiety VAS, GI tolerability and palatability analyses.

Consumption of the Fiber Scone significantly reduced postprandial glucose and insulin incremental areas under the curve (43-45% reduction and 35-40% reduction, respectively, p<0.05 for both) as well as postprandial glucose and insulin maximum concentrations (8-10% and 22% reductions, respectively, p<0.05 for both).  Ratings of hunger and desire to eat were also significantly reduced following consumption of the Fiber Scone vs. the Control Scone during the 180 minutes after intake (p<0.05) and there were no GI side effects with the Fiber Scone compared with Control.


This study shows significant reductions in postprandial glucose and insulin levels associated with the replacement of refined carbohydrate with RS4 in healthy subjects. In addition, ratings of hunger and desire to eat were reduced after consumption of the RS4-containing food product, a first for this specific RS ingredient. Incorporation of a fiber such as RS4 into the diet has potential clinical and practical relevance due to favorable impacts on markers of cardiometabolic health.12,13


  1. Stewart ML, Wilcox ML, Bell M, Buggia MA, Maki KC. Type-4 resistant starch in substitution for available carbohydrate reduces postprandial glycemic response and hunger in acute, randomized, double-blind, controlled study. Nutrients. 2018;10(2).
  2. Dahl WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. J Acad Nutr Diet. 2015;115:1861-1870.
  3. Stephen AM, Champ MM, Cloran SJ, et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev. 2017;30:149-190.
  4. Tosh SM. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. European J Clin Nutr. 2013;67:310-317.
  5. Robertson MD. Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care. 2012;15:362-367.
  6. Haub MD, Hubach KL, Al-Tamimi EK, Ornelas S, Seib PA. Different types of resistant starch elicit different glucose reponses in humans. J Nutr Metab. 2010;2010.
  7. Al-Tamimi EK, Seib PA, Snyder BS, Haub MD. Consumption of cross-linked resistant starch (RS4(XL)) on glucose and insulin responses in humans. J Nutr Metab. 2010;2010.
  8. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5:e15046.
  9. Shimotoyodome A, Suzuki J, Kameo Y, Hase T. Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. Br J Nutr. 2011;106:96-104.
  10. Gentile CL, Ward E, Holst JJ, et al. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women. Nutr J. 2015;14:113.
  11. Stewart ML, Zimmer JP. Post-prandial glucose and insulin response to high-fiber muffin top containing resistant starch type 4 in healthy adults: a double-blind, randomized, controlled trial. Nutrition. 2018 (in press).
  12. Maki KC, Pelkman CL, Finocchiaro ET, et al. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr. 2012;142:717-723.
  13. Marlatt KL, White UA, Beyl RA, et al. Role of resistant starch on diabetes risk factors in people with prediabetes: design, conduct, and baseline reuslts of the STARCH trial. Contemp Clin Trials. 2018;65:99-108.
tape measure

Leave a Comment